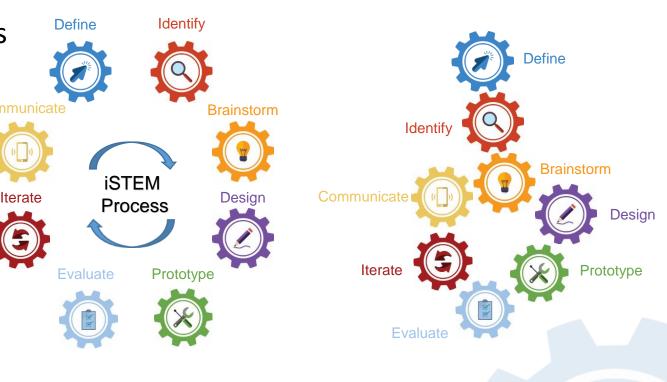

ISTEM ENGINEERING DESIGN PROCESS



1. Define – the problem

- **2. Identify** the constraints
- **3. Brainstorm** possible solutions
- 4. Design your solution
- 5. Prototype your solution
- 6. Evaluate your solution
- 7. Iterate your solution
- 8. Communicate your solution

8 STAGES OF THE iSTEM PROCESS

1. Define

The Problem

Describe the problem or need in detail to gain understanding. Think about and discuss initial thoughts.

Key Questions

- Why does the problem need to be resolved?
- What experiences can you relate to the problem?
- What caused the issue to begin with?
- What are your initial thoughts of how you could possibly resolve the issue?
- How can you help contribute to the solution?
- Do you have more questions about the problem?
- Who would benefit from finding a result?
- What process will need to occur to achieve the end result?
- Where do you start to resolve the problem?

- Mind map initial thoughts and additional questions
- Generate discussion about prior knowledge and experience
- Collaborative discussion on what assets are available
- Discuss resources available/needed to assist
- Define the actual problem clearly and concisely
- Identify sources of information
- Articulate the scope and nature of the problem
- Produce a statement of the problem

2. Identify

The Constraints Outline the specific boundaries for which the project will be confined.

Key Questions

- How much will it cost and overall budget?
- What knowledge will be required to solve the problem?
- What skills are needed?
- Time for completion?
- Tools and equipment required and available?
- Scope of the final task?
- What data or information is required?
- What are the aesthetic, functional and ergonomic considerations?
- What are the features that must be included within the solution?
- Have all limitations been identified?

- Research constraints
- Meet with client to determine customer needs
- List all relevant constraints
- Produce a high level budget plan
- Produce a resource list, including tools, materials and people
- Identify start and finish dates for the project
- Identify what data and information will need to be collected
- Research the problem and potential solutions
- Produce matrix identifying the aesthetic, functional, ergonomic consideration

3. Brainstorm

Multiple Solutions Discuss, expand and scaffold ideas collaboratively.

Key Questions

- Expand on initial understanding 'Define' ideas and 'Constraint' categories
- What categories are relevant to research?
- Identify and analyse data and additional information needed to build knowledge?
- What are existing solutions and thoughts of improved solutions?
- Expand priorities and constraints that must be included within the solution
- How will skills be implemented?
- How can technology be applied?
- Are the opportunities to reflect on quality and application throughout the process?

- Use a range of brainstorming techniques to produce ideas on developing solutions
- Produce a range of thumbnail sketches and annotated drawings
- Combine ideas to create new ideas
- Research existing solutions and design ideas
- Complete a skills audit
- Research possible technologies and techniques
- Add to mind map ideas
- Attempt to refine and simplify ideas relevant to 'Design'
- Expand on knowledge and solutions, take most relevant ideas to research

4. Design

The Most Promising Solution

Investigate areas which can provide a variety of options. Refine ideas down to one viable solution, create a plan to communicate ideas and process to resolve the problem.

Key Questions

- What the final product will be concept/prototype/functional product/presentation/research task?
- What existing solutions can be evaluated?
- Refine and investigate key categories from 'brainstorm'
- What is the planned direction and priorities?
- Has a budget been considered?
- What technological skills are needed?
- What materials are available or needed for the task?
- What tools and skills are needed to complete the task?
- Are sizes, ergonomics, aesthetics a consideration?
- What skills are available or needed to ensure success?
- Estimated timeline and actions for management

- Identify priorities and goals to 'Prototype' the task
- Timeline of project to completion and/or process checklist
- Outline and allocate roles and responsibilities
- Analyse potential solutions and refine ideas
- Establish baseline data
- Identify resources available/needed to assist
- Define the 'best possible solution' to 'Prototype'
- Refer to 'brainstormed' ideas and provide scaffolding and regular feedback
- Produce detailed drawings of solutions/algorithms, flowcharts

5. Prototype

Your Solution

Produce a model of the best possible solution from 'Design' stage. This stage may call for areas within the plan to be revised.

Key Questions

- Do you have an adequate plan in place and are you prepared to begin the creation phase?
- Do all stakeholders know their roles and responsibilities?
- Can the final choices be justified?
- What type of prototype: product, mathematical, computer.
- Are there opportunities to reflect on quality?
- Is time management being effectively applied?
- WHS processes for practical tasks?
- Are resources available to execute the task effectively? Technology/materials/skills.
- What processes will need to be evaluated?
- What testing of the prototype is going to be required?

- Execution of areas identified to be completed
- Use rapid prototyping techniques to produce models of potential solutions
- Produce working models that demonstrate the aesthetics, functions and ergonomic attributes of the potential final solution
- Provide regular feedback to clients on progress
- Test each model against working criteria and goals
- Test for functionality and performance
- Compare and evaluate results from testing to determine which, if any, of the possible solutions will be implemented.
- If none of the solutions are ideal, return to stage 3 or 4

6. Evaluate

And Test Your Solution *Evaluate the solution against the identified problem in 'Define'.*

Key Questions

- Was the plan followed?
- Has the solution resolved the problem as defined?
- Does it resolve the problem?
- Where can revisions/improvements be made?
- Will the revisions significantly improve the solution?
- How long will it take for the revisions to be made?
- Will the revisions be costly either time or financially?
- Are there resources available to achieve improvements?
- Is there more research and testing required?
- Where could improvements be made in the earlier stages?

- Critically reflect and evaluate the solution to the initial problem, plan and baseline data
- Client evaluations and feedback to establish if the solution is successful
- Self reflection from the design team to evaluate the process and improvements to be made
- Plan revisions if they are needed for the final product
- Plan improvements for the final solution
- Design team to provide regular feedback to client
- Re-evaluate, investigate, test and brainstorm until the solution resolves the problem effectively
- Update detailed drawings required for the production of the final product

7. Iterate

To Improve Your Solution

Evaluate the solution against the identified problem in 'Define'. Produce solution, revise and continually improve. May require starting back at earlier phases.

Key Questions

- How can the solution still meet the identified need?
- Has the identified problem changed?
- Are there other opportunities?
- How can the solution be improved?
- What are the consequences of not iterating?
- Do we need to revisit earlier phases of the process?
- What will the revisions look like? Are there plans?
- What needs to be completed?
- What are the priorities?
- How much time is needed to manage the revisions?
- Will the revisions remain within the budget?
- What new skills or additional resources will be required?

- Refine ideas based on results of experimentation and testing
- Prototype the final product, system or environment?
- Redesign solution, moving back through the process if required
- Analysis in reference to plan and baseline data
- Continual cycle from 'Design, Prototype and Evaluate' until the 'best possible solution' is found
- React to the results of evaluation
- All key stakeholders should agree on the proposed product, system or environment.
- Produce the final product? Minimal Viable Product level or production level

8. Communicate

And Share Your Solution Share and communicate the solution.

Key Questions

- Have all key stakeholders been informed throughout the process?
- Who do you need to share the solution with?
- Would it benefit the broader market?
- How can you share the solution effectively?
- Have all the product specifications been documented?
- Have you received all regulatory approvals?
- Have all necessary reports been provided?
- What are the results of product testing?

- Pitch the solution to client or potential investors
- Document the design specifications, measurements and communicate to all groups
- Communicate between key stakeholders in meetings, presentations, reports and drawings
- Develop a communications and marketing plan
- Seek all necessary regulatory and legal approvals
- Ensure all Intellectual Property is protected
- Provide all necessary materials to the manufacturer or developer for full production of the product, system or environment