iSTEM StarLAB: Design for Space Year 9

Summary:

Explore the concept of Mars and space exploration through the practical application of STEM fundamentals and Mechatronics using StarLAB's space geared learning platform and hardware. Students will learn computer programming, robotics and data analysis with optional extension learning in motion, renewable energies and statistical representation with the culminating goal of competing in a national competition.

The Mars Rover is the centrepiece of the StarLAB education system. Students get handson with hardware to build a Mars Rover, and learn how to apply their software coding and robotics skills to give it life. They can program the Rover to sit, stay, and navigate alien terrain. Students can also connect with other STEM students across Australia to creatively problem solve in the National Mars Rover Challenge!

- All Python and Robotics course material is supplied via the StarLAB Moodle.
- The learning program below uses a "stacked" learning approach which enables students to learn portions of Python then apply their knowledge to experimenting with the StarLAB hardware. Alternatively, students can complete the Python lessons sequentially prior to commencing the Hardware lessons. Hardware lessons should be completed before Robotics Rover lessons.
- Approximate time for completion of StarLAB Moodle lessons is 60 80 minutes each
- Inquiry questions are embedded throughout to encourage teacher facilitation and student investigation of STEM concepts in both theory and practice.
- Teaching / Learning Codes: T = Teacher, S = Student, C = class, G = group
- Advancing and Developing are indicators of achievement levels or suggestions for differentiation to support students at various learning levels which can be further supplemented with extension activities.
- **Extension activities** are optional and designed to appeal to a variety of learners. These activities could be used as mini projects or expanded for major projects to meet further iSTEM outcomes.
- All links to external videos and websites, other than StarLAB content, are provided for teacher reference only and should be watched or reviewed prior to use to determine suitability for individual classroom use as per teacher discretion.

Du	ration:	Version: 1 (January,
	rm 1 – 3; National Mars Rover Challenge Term 3	2017)
	EM Module(s)	Date:
Fo	cus:	
Co	re 1 - STEM Fundamentals 1	
Co	re 2 - STEM Fundamentals 2	Teacher:
Со	re 3 - Mechatronics 1	
Co	re 4 - Mechatronics 2	
	ctive 6 – Motion	Assessment:
Ele	ctive 12 - Design for Space	
	pporting / Optional:	
Ele	ctive 7 – 3D CAD/CAM	
Ele	ctive 9 or 10 – Minor or Major Project	
Ele	ctive 13 – Statistics in Motion	

Prior to starting this unit of work, discuss the following with your IT Administrator:

- Install Python 2.7 on the school network for student use. Installation instructions can be found on the StarLAB website <u>http://www.starlab.education/setup</u>or use the portable python option which doesn't require installation (provided on the StarLAB USB along with additional software)
- Disable any ad-blocking software for our website, entirely.
- Disable any tracking-blocker software for our website, as we use cookies.
- Enrol students / check enrolments for the external StarLAB Moodle course. Login details will be distributed by StarLAB.
- Your school/institution must allow Vimeo videos through the firewall.
- Teacher & Students cannot be logged into more than 2-3 devices per login account.
- Lesson Python 0 via the StarLAB Moodle is available to guide student through the installation of Python 2.7 for BYOD or home computers.

Γ	Key Inquiry Questions:		Equipment / Software Required:
	-	Why should I learn Python?	StarLAB Moodle Access (Student & Teacher Accounts)
		What are algorithms, pseudocode and flowcharts?	StarLAB USB
	3.	What are the common coding mistakes and what strategies can I use to fix them?	Python 2.7.9
	4.	What is a micro-controller?	StarLAB Hardware Platform
	5.	What sensors are available and what type of data can be collected?	Rover Kit
	6.	How do each of the sensors work and how are they controlled by code?	Internet / Computers
	7.	What are the impacts of software (coding) in the past, current and future space	Optional:
		program?	Office Suite (Word Processor / Spreadsheets)
	8.	What is Australia's past, current and future involvement in space exploration?	Image Editing or Graphic Design software
	9.	How is robotics used in NASA programs?	Cloud Storage (Google Drive, One Drive, etc)
	10.	How does magnetism, velocity, inertia, momentum and acceleration affect	
		mechanical motion, navigation and human movement on Mars?	Supplementary Resources:
		What energy sources are available on Mars?	NASA scientific and visualisation tools (website)
		What are the potential scientific roadblocks to a successful Mars mission?	NASA Mars 1 year Simulation (article)
		What tools can I use to collaborate on and manage my project?	Ancient Aboriginal Star Maps (article)
		What data have I collected and how is the best way to model it?	Star Maps and Aboriginal Song Lines (article)
	15.	What creative ways can I use the sensors or what other problems can I use them	Lockheed Martin Virtual Mars Field Trip (videos)
_		to solve?	Make Mars Home Simulation (website)
		g Intensions:	NASA's Hidden Figures (website/videos)
	•	Computational Thinking – Python Coding	<u>Women@NASA</u> (website/biographies)
	•	Data Collection & Simulation – StarLAB Hardware Sensors	<u>Margaret Hamilton's Code to the Moon</u> (article) <u>Curiosity Rover Mission</u> (website)
	•	Creative Problem Solving – Mars Rover Challenge	Additional Python Tutorials - <u>Codecademy</u> (interactive tutorials) or
	•	Collaboration – Mars Rover Challenge	HelloWorld (video tutorials)
	•	Experimentation – In Class Experiments using StarLAB Platform	Physics Classroom (website interactive tutorials & teaching resources)
	•	Investigate Space – StarLAB Platform & Supplement Materials	Lucid Charts – (free software) flowchart & diagramming
	•	Opportunities for expanded learning – Motion, Renewable Energy & Statistics	<u>Computer Science Unplugged</u> – (non-computer based activities)
	-	Topics:	
	•	Computer Science, Mechatronics, Motion, Electromagnetic Spectrum,	*All links to external videos and websites are provided for teacher
		Ecosystems, Energy & Cultural Perspectives	reference and should be watched or reviewed prior to use to determine
	•	Consistently underpinned with applicable Mathematics & History concepts	suitability for individual classroom use as per teacher discretion.
	*Teach	ing and Learning program written by Peggy Mangovski on behalf of RDA Hunter	
	leach	ME Program	Teacher Resources:
			StarLAB Teacher Resources
			Moodle modules are self-guided and support different ability paces.

Outcomes	Teaching & Learning Strategies	Differentiation Strategies	Registration
StarLAB 2.3 12.1 Extension 1.2 9.2 12.1	 Your First Program (Python) Students will familiarise with the StarLAB Moodle learning platform to begin introductory lessons in the Python programming language. Note: Python 2.7 should be installed on your school network by your administrator prior to starting this learning program. T: Introduce unit of work. Direct students to or display Obelisk's website http://www.starlab.education/tech/ C/G/S: Discussion or Investigation What is Python? Who was the first programmer? T: Demonstrate how to access StarLAB Moodle using Python Lesson 1 S: Python Lesson 1 Print statement Syntax error correction G/C: Discussion or investigation What is the significance of 'Hello World' in programming? Who created Python? What type of language is python? Find examples of software made with Python 	 Advancing: Apply coding skills for syntax correction Create additional print statements ie: About Me (name, hobbies, likes, dislikes, etc.) Developing: Understand the basics of coding to create output statements Pair or cluster learners to complete Moodle activities Extension Activities: S: Complete a <u>KWL chart</u> focusing on the areas of either Python, StarLAB / Obelisk G: Create a short digital presentation about the history and significance of "Hello World" S/C: Create and maintain a record of learning using a blog (WordPress, Blogger, Weebly, etc.) 	
StarLAB 2.3 4.2 12.1 Extension 1.2 9.2 12.1	 Variables, Types & Assignment (Python) Students will investigate the basics of computer architecture and Computer Science while furthering their skills in the Python programming language. Students will also develop logical thinking skills by learning to flow chart algorithms and apply mathematical skills to develop basic algorithms. Tips: Use split screen to watch/follow along with the video while typing the code. Students can copy and paste code; encourage students to modify code examples and screen capture results which can be used in their learning journal. T: Introduce the concept of how computers work and think How a computer works 	 Advancing: Experiment with additional mathematical operands (-*/) and or create additional customised swap messages Apply mathematical and logical thinking skills to interpret and create solutions using binary or cryptology Write flowcharts or pseudocode for multiple step algorithms using decisions Developing: Teacher modify Lesson 2 Code File to create simple errors in the code (syntax or missing semicolon) for students to correct using pen and paper. Provide 	

Importance of Binary in Computer Science St. Davelan understanding of the Binary (Base 2) Number System	correct answers (similar to a cloze passage
S: Develop understanding of the Binary (Base 2) Number System	technique)
• <u>Learn Binary</u>	 Understand and apply basic decoding skills for binary
Write own name using binary	binary Dead and internet flourshorts an approximation do for
C/G: Discussion or Investigation	Read and interpret flowcharts or pseudocode for
What is Computer Science?	basic algorithms
 How does a computer use binary to complete actions? 	Extension Activities:
 How is Binary different than our Decimal number system? 	
 Are there any other number systems? 	T/C/G/: Hands on activity to simulate how a computer
T: Introduce the basic concepts of flowcharts and or pseudocode to provide	works; <u>downloadable</u> activity builds logical thinking skills
students with a visual / symbolic understanding of code providing	and reviews Cartesian plane mathematics
metacognitive tools for problem solving in later activities.	S: Complete <u>Algorithm Challenges</u> in flowcharts or pseudocode
Overview - why learning to use flowcharts & pseudocode are	S: Investigate the different data types used in
important.	programming then create a short digital presentation with
Level 1 Flowcharts & pseudocode - Learning key terms, symbols &	examples based on a favourite game
practical activities.	S/G: Write a short secret message or the answer to a joke
• S: Create flowcharts of python activities completed.	in binary to share with the class. Decode messages or
Level 2 video could be used as review material for concepts covered	answers. This can be done with paper or using online
in the StarLAB Moodle lessons.	interactives (<u>decode cipher</u> or create a <u>secret message</u>).
S: Complete StarLAB Python Lesson 2	T/C: Create a treasure hunt with certain key words in
Assign integers & strings	Binary or a Cipher technique
Simple mathematical calculations	Challenge: first student to decode and find all the
Print statements.	objects wins a prize.
Classic Swap Exercise	S/G: Create a video or podcast interview with one of the
Quizzes	following historical figures in Computer Science about the
T: Key Concepts to Computer Science	significance of their contribution: Charles Babbage, Ada
 <u>Moore's Law</u> – transistors, binary & quantum computing 	Lovelace, Alan Turing, Gordon Moore or John Von
 <u>Encryption</u> – Introduction to ciphers & history of computer 	Neumann
cryptology	S: Create an artistic mural, collage or timeline of a
Internet of Things (IOT) – Future of computing	significant Programmer, Computer Scientist or past
S/G: Discussion or Investigation	technology that has led to advancements in Computer
What is a Cipher?	Science
What is Cryptology?	C/G: Talk like a computer - simulated <u>Turing Test</u> activity
 How has encryption changed over time? 	C/G/S: Cryptographic protocol activities – Peruvian coin
	toss

 What are the challenges of technology innovation and Moore's 	5
Law?	
How has and will the Internet of Things impacted the world?	
What is the relationship between Moore's Law, Encryption & I	
StarLABIntroducing the hardware (StarLAB Hardware)1.2Students will familiarise with the StarLAB hardware equipment to learn	Advancing:
2.3 to control sensors while exploring the role of atmospheric conditions in	
3.1 maintaining habitable ecosystems which is a key component of current	
6.2 future space exploration.	
9.4	application of sensors to determine atmospheric
12.1 T: Demonstration of StarLAB Hardware	impacts on ecosystems Developing:
12.2 S: Identify hardware components	 Identify the purpose of StarLAB hardware
12.4 C: Discussion	components
• What is an API?	 Understanding of sensor hardware to determine
How does an API work?	atmospheric conditions
• What is the purpose of an API?	
9.1 S: Complete StarLAB Hardware Lesson 0 –	Extension Activities:
9.2 • Familiarisation with hardware	S: Using the StarLAB website, investigate each of the
• API setup	sensors available to create a report, brochure or digital
0.4 C: Discussion	presentation explaining the function of each sensor
• What is a microcontroller?	S: Create, monitor, record and model the progress of a
• What sensors are available and what type of data can be collect	simple enclosed terrarium - <u>light bulb</u> or <u>plastic bottle</u>
using StarLAB hardware?	S: Design a 3D model or poster for a terrarium based on
How are microcontrollers used in space? (Satellites, ISS, Radio	specific environmental conditions or animal life needs
waves, Rockets)	(rainforest, desert, frogs etc.)
S: Complete StarLAB Hardware Lesson 1 (part 1 – 6)	S: Collect temperature and barometer readings in various
 collecting data with sensors (thermometer, barometer & ambigue to the sensor) 	locations throughout the school to analyse data and
light)	create graphs of conditions / variations
G: Investigation with examples	Challenge: repeat at the start and end of the unit
What is a <u>terrarium</u> ?	or at varying times throughout the unit; analyse
Are there different types of terrariums?	and graph data
How do terrariums work?	G: Create a simple solar still. Investigate efficiency of
How and why would terrariums be used in space exploration?	solar stills and water purification techniques then
How does the water cycle impact on ecosystems?	suggest improvements or create a prototype with
• NASA <u>water mining</u> robot	increased efficiency
S: Complete StarLAB Hardware Lesson 1, Part 7 – My first terrarium	

	Intro to <u>123 AutoDesk</u>		
	 Light a LED with resistor 		
	Measure Current		
Starl AB		Advancing	
StarLAB 1.2 2.3 3.1 4.2 6.2 6.5 12.1 12.2 Extension 1.2 2.3 3.1 4.2 6.1 6.2 7.1 7.3 9.1 9.2 9.3 9.4 9.5 12.2 12.4	 Measure Voltage Decisions & Loops (Python & StarLAB Hardware) Students will further their computer programming skills to use logic and scenario parameters to make code based decisions and learn to efficiently repeat steps using sensor data. Students will also explore the mathematical formulas and scientific properties of waves through both theory and practical activities to establish a foundation for further study in the electromagnetic spectrum. T/C: Discussion - How do decisions affect programs? What type of decisions can be used and how are they different? S: Complete Python Lesson 5 – Decision Making & Conditions (If, If else, elif) T/C: Discussion – How is Maths used in computer programming? Give examples of how real life software solutions, such as Facebook, Google Maps or Games (Battlefield, Sims, WOW etc.) use Maths. S: Complete Python Lesson 6 – More involved Math (Multiplication, Division, Power, MODULO, Includes) S: Create flowcharts based on coding activities. T: Demonstration / activity- using two or three different types of small objects (marbles, cotton balls, gummy bears, M&Ms, etc.) and small clear containers, demonstrate the process of decision making to sort the objects into the containers. Conditions to be met: Same objects into the same container or based on size, colour, etc. S: Write out instructions (pen & paper) using <i>If, If else or eliff</i> based on properties of the object. C: Discussion – is making multiple repetitive decisions using an If or If else efficient based on the number of decisions 	 Advancing: Modify and extend skills in multiple decisions and loops to create functional code with the ability to apply knowledge in the creation of accurate flowcharts Articulate the relationship between radio waves and light waves in the creation of a Theremin Developing: Create mostly accurate flowcharts to represent the use of decisions and loops in python activities Use of light waves to create a Theremin device Extension Activities: S: Write code to combine mathematical operations to solve complex word problems involving loops or decisions S: Write code to create calculator for common mathematic problems such as area, volume, perimeter, etc. Example: Farmer needs to calculate the area of his paddock based on user inputs S: Create an instruction flowchart to complete a daily task that uses repetition (tying shoe laces or washing dishes) clearly indicating multiple decisions / conditions and the use of loops C/G: Using a logic game from CoolMaths (Aztec Escape), determine the use of inputs and outputs to users (instructions, controls, triggers, processes, decisions etc.) C: Identify the inputs, outputs and loops /decisions 	
	 and objects or properties of objects? Introduce the concept of decisions that use multiple repetitions. While container one is empty, fill with object one (Pre-test loop) 	 for the start screen & level 1. G: Write instructions or flowcharts to solve level 1 (Move right x2 etc.) 	

 S: write out instructions for repetition (While loop) and 	S/G: Create a YouTube style video that demonstrates the
compare the number of lines to the previous.	programming concepts of decisions and loops using
 C: Discussion – What happens if the objects are gone but 	everyday objects
the container isn't full? (Loop isn't closed – <u>infinite loop</u>)	S/G: Investigate a chosen light sensor Ambient Light, UV,
• Introduce the concept of counting in loops. Only the first four of the	IR. Create a diagram labelling the components with a short
same object are placed in container two and the next ten are placed	description of how the sensor receives, process and utilises
in container three (Counted Loop) or five blue M&M's go into	light.
container then eat one and repeat until all the blue are gone	• Challenge: creation of an exploded CAD diagram
(Counted & Post-test Loop).	S: Investigate the <u>electromagnetic spectrum</u> and the
• S: Write out instructions for counted loop.	impacts on our daily lives
 C: Discussion – How can the ability to loop or repeat 	S: Research, design and create a timeline diagram or
instructions be used in real life coding problems or special	infographic depicting the significant discoveries,
equipment used in STEM industries?	advancements and inventions based on radio waves with
S: Complete StarLAB Python Lesson 7 – Loops	either a focus on daily life or space exploration
 S: Code Post-Test, Pre-test and Counted loops 	S/G: Create a short animation explaining the function of a
 S: Code a guessing game using inputs, outputs and loops 	chosen device that uses radio waves
• S/G: Choose a scenario (Spacecraft, Submarines, Aircraft, etc) and	S: Write a report comparing the different waves on the
write out instructions (pseudocode or flowcharts) using loops to	electromagnetic spectrum and their uses with examples
solve a problem or accomplish a task related to their chosen	 Challenge: include the past, current and emerging
scenario.	scientific theories or technological advancements
T/C/G: Discussion or Investigation	C/G: Using the buzzer and lessons learned in the Spectrum
What are <u>Radio Waves</u> ?	activity, plan, design and play a StarLAB "Theremin" based
 S: Identify/explain/illustrate the properties of waves – hertz, 	on a short snippet of chosen music
band, frequency, amplitude	 Challenge: Groups could compete for the best
 Impacts of radio waves on our daily lives (uses, device, etc) 	Theremin inspired rendition
 Importance of <u>radio waves in space</u> exploration or travel 	
 Radio waves in deep space – current theories or discoveries 	
 What is the electromagnetic spectrum? 	
 What is a <u>Theremin</u> and <u>how does it</u> make music? 	
 Can light be used to create a <u>Theremin device</u>? 	
S: Complete StarLAB Hardware Lesson 4 – Spectrum (using sensors for	
output based on looping / decision based mathematical calculations for	
distance and light levels)	
T/C: Discussion/Investigation –	
 What are the differences and similarities between radio and light 	
waves?	

	 How does magnetism affect acceleration and rotation? StarLAB Electromechanical devices and electromagnetism S/G: Investigation of electro-mechanics What does an electromechanical engineer do? How are electromechanical systems used in space or space exploration? (Rockets, Satellites, Probes, Telescopes, ISS etc.) How is energy controlled and or powered by electromechanical devices? How do electromagnetic fields affect our daily lives and or space exploration? T/G: Discussion or investigation What is motion? 	 S/ G: Investigate electromagnetism and its use in transportation – trains, cars and home energy or automation S: Choose an electromechanical device used in space and create an exploded 3D model using technical drawing or CAM to demonstrate the components of the device with a brief description on how it functions S: Research the impacts of Electromagnetic Fields on the human body and the common sources of EMF in the home; create a digital presentation or infographic to present findings
StarLAB	 How do you calculate and measure motion? Experiment with the 3 Laws of Motion using <u>interactive simulations</u>. What forms of energy can used to create motion? Classes & Games (Python) 	Advancing:
1.2 2.3 12.1 12.3 12.5	Students will learn the basics of Object Oriented Programming to create mini games using StarLAB sensors. This section further develops problem solving and mathematical skills as well as developing essential skills for future success in the Rover Robotics competition. T: Introduce the concept of Programming Paradigms	 Create multiple objects for multiple classes to create functions with output statements Use multiple built-in Python functions to modify games Developing:
Extension 1.1 1.2 2.3 9.2 9.4	 Procedure vs Object Oriented Programming (OOP) languages - Video Introduction to <u>Classes</u> C: Discussion What is a <u>Class</u>? (blueprint for an object) What are the main components of Classes? (objects, attributes & 	 Modify classes and objects (attributes & methods) Use the Random function to create functional games Extension Activities:
9.5 12.1	 methods) How does using Classes benefit programmers? (faster to code, reusability, reduces likelihood of errors & easier to maintain) S: Complete StarLAB Python Lesson 10 - Classes Creating classes 	 S: Create flowcharts for one of the games using the random function S: Research games made with Python to create a timeline or digital presentation S: Expand artwork code or game code to incorporate the use of sensor data in the program
	 Instantiating objects Defining attributes & methods Using Classes to calculate the area of a Prism Apply knowledge of classes to create a small artwork 	 S/G: Create a multiplayer game <u>Battleship</u> <u>Lines using PyGame</u>

	S: Complete StarLAB Python Lesson 11 – Fun & Games	• StarLAB lessons provide the basics of learning	
	 Use the Random function to create 	python which can be applied to other solutions and software, such as <u>PyGame</u> (requires additional	
	 Dice Game 	software installation and learning outside of what is	
	 Number Guessing Game 	provided as part of this iSTEM teaching and learning	
	 Magic 8 Ball Game 	program).	
StarLAB	Cameras & Space Exploration (StarLAB Hardware)	Advancing:	
1.1	Students will explore the history and principles of Astrophotography,	Write code to create an image recognition	
1.2	digitising of light and mechanical functions of cameras. This section builds	program	
12.1	on the previous learning in the electromagnetic spectrum, sensors and	 Understanding of chemical reactions in 	
12.2	Computer Science.	photography and the relationship between	
12.3		photography and electromagnetic spectrum	
Extension	T/C: Review of light waves	Developing:	
1.1	T: Introduce the concept of Astrophotography	Use an image editing program to stitch together	
1.2	History of Space Photography	images taken using the magnetometer and	
2.2	S/G: Research and compare the technical specifications of imaging	accelerometer data	
7.1	equipment throughout history to the specifications in their mobile phone or	Understanding of concave and convex lenses	
7.4	device. (Examples: Lunar Orbiter 1, Apollo 11, Hubble Telescope, Mars		
9.2	Rover)	Extension Activities:	
9.4	T/C/G/S: Science of Photography	S: Compile or create an image gallery slideshow of his/her	
	<u>Photoelectric Effect</u> (video)	favourite space images spanning from the start of the	
	 <u>Properties of Lenses</u> (video) 	space program to current space missions	
	<u>Science of Lenses</u> (video)	S/G: Investigate the elements used in the processes of	
	 Or a more simplified explanation of <u>how Photography works</u> 	creating film and digital images	
	(website)	Challenge: create a poster, infographic or digital	
	T/C: Discussion or Investigation	presentation to demonstrate the chemical	
	 How do we manipulate crystals for traditional film and digital 	compositions and reactions in photography	
	photography to produce an image?	G/S: Investigate how a chosen camera mechanically	
	 How does the speed of light impact on photography? 	functions	
	• What type of light waves can be captured using different types of	Challenge: create a cardboard prototype to	
	camera sensors?	demonstrate concepts	
	 How does the size and shape of lenses change an image? 	S: Create or find a pixel art image of earth. Using a graphics	
	How does aperture and shutter speed affect images?	editor program (ie: Adobe Photoshop or any program with	
	What is spatial and tonal sampling?	a colour picker tool); find and label the RGB /Hexadecimal	
	What roadblocks or challenges exist in Astrophotography compared	colour codes	
	to photography on earth?	S: Investigate the different types of cameras or career	
	T: Mathematics of Colour Codes		
		options using photographic equipment	

	 <u>Code side of colour</u> – understanding Hexadecimal codes <u>RGB</u> – Mathematics of digitising colour C: Discussion – How do Computers and Humans see or understand colours differently? What is a pixel and how do they affect image quality? S: Complete StarLAB Hardware Lesson 6 – Camera Digitizing light Calling and disabling StarLAB Camera functions Coding sensors to create panoramic photos 	 S: Chose a camera (GoPro, Polaroid, popular DSLR, space telescope, etc.) Challenge: Create a 3D exploded CAD drawing to label each of the primary components
StarLAB 1.1 1.2 2.2 3.2 4.1 6.1 6.2 6.3 12.1 12.2 12.3 Extension 1.1 1.2	Hello Rover (Rover Robotics)Students will build upon and expand their knowledge of motion and electricity to experiment with motors to control the StarLAB Rover equipment. This section will develop essential skills for the Rover Robotics Competition. Students will also begin to investigate the use of energy and robotics in space exploration.T/S: Review• Electromechanical devices – give examples• Laws of motion• API & Hardware LibraryT: Introduce the concept of motors and how they work• S: Explore the concept of <u>electric motors and electricity efficiency</u> • Who was Michael Faraday? • What role does current and voltage have in creating?	Advancing: • Apply knowledge of electromechanical devices and the laws of motion to modify pre-programmed settings for motors Developing: • Understanding the laws of motion in relation to motors and robotics Extension Activities: S/G: Create a podcast interviewing an inventor responsible for past, current and emerging technologies in motion or energy • How did or will their contribution impact on daily life?
2.2	 What role does current and voltage have in cleating? electromagnetic fields? What are the mathematical formulas for calculating electrical charges, electrical efficiency and the cost of energy? What is wasted energy? T/C: Discussion What are the past, current and future role of computer code in space? How do the laws of motion affect or are used in robotics? Give examples. 	 S: Research different types of motors. Create a timeline or infographic. Compare functionality, pros & cons Evolution of motor technology S: Compare NASA robots Technical specifications (sensors) Mission objectives Construction materials Applications for Mars Rover technology on earth. (Nissan automated cars).

	 How do <u>robots use sensors</u>? 	S/C: Experiment with magnetism to create simple electric	
	 When did the Mars Rover program start? 	motors or simple <u>electric trains</u> .	
	 What types of robotics are used in space exploration? 	Challenge: build a car or train with a class race	
	S: Explore the NASA Mars Rover website	day.	
	Missions	 Challenge: Combine with <u>dominos</u> to make 	
	Technology	creative challenges using forces of motion.	
	Rover Discoveries	S: Investigate the concept of Faraday cages and impacts on	
	How Rovers drive on Mars?	the flow of electricity	
	S: Complete StarLAB Robotics Rover Lesson 0	S: Using a spreadsheet program (Excel or Google Sheets)	
	Familiarise with the Rover API	identify and record the number of light bulbs and electrical	
	Connecting remotely	devices in the home or a specific room in the home	
	Execute demonstration code	(number of items, efficiency rating, current, voltage, cost	
	T/C: Discussion or Investigation	to run, etc).	
	What is a DC brushless motor?	Challenge: Develop a plan or strategy to improve	
	 What is the difference between brushed and brushless motors? 	the home's electricity cost & usage.	
	 Why do robots have multiple motors? 	S/G: Investigate the use of mains electricity and alternative	
	 How does a <u>brushless motor</u> work? 	energies for daily use.	
	 Are there other types of motors and how do they work differently to 	 Create a model (paper or 3D) or digital 	
	• Are there other types of motors and now do they work differently to a brushless motor?	presentation (animation, how to video or	
	S: Complete StarLAB Rover Robotics Lesson 1 – Using Motors	infographic) to demonstrate how electricity works	
	-	(life cycle of energy, efficiency, cost, etc.)	
	 Using motors to control pre-programed motion (direction, speed & bearing) 		
	bearing)		
	Controlling individual motor speeds		
	S: Create flowcharts to represent the pre-programmed motion code		
StarLAB	Sensing & Navigation (Rover Robotics)	Advancing:	
1.2 2.3	Students will use sensors and mathematics to develop essential skills in rover	 Using a variety of sensors and writing code to 	
2.3 3.1	navigation and obstacle avoidance. This section builds upon their knowledge	complete complex navigation and solve problems	
3.2	of magnetism and motion to program the rover to adjust to terrain	for obstacle avoidance	
4.1	differences. Students will also investigate the principles of and cultural	 Identify scientific principles affecting space 	
4.2	contributions to technological advancements in navigation.	navigation	
6.1	T/C: Review & Discussion	 Applying coding skills to accommodate terrain 	
6.2		changes in robotic navigation	
6.4	-	Developing:	
6.5	Why is it important to avoid obstacles?	 Modifying code to sense and avoid objects 	
12.1	S: Complete StarLAB Rover Robotic Lesson 2 – Distance Sensor		
12.2	Sensing and calculating object distance		

12.3	Using sensors to avoid obstacles	Apply the core principles of navigation to solve
	T/C: Investigate ancient, non-mechanical & digital methods of navigation.	problems
Extension	• G/S: Case study of cultural or historical navigation techniques	 Understanding the impacts of terrain changes to
1.1	• <u>Aboriginal Song Lines</u> and the relationship to <u>astral objects</u> .	motion and navigation in robotics
1.2 2.1	 Norse navigation technology 	
2.1	 <u>Han & Song Dynasty's</u> magnetic compasses 	Extension Activities:
2.3	• G/S: Compare traditional compass navigation to GPS navigation.	S: Investigate local Aboriginal Song Lines
3.1	 What is a bearing and why is it important to navigation? 	S: create a simple magnetic compass
3.2	 How do magnetic fields affect navigation? 	G/S: Create a map of the school using an Image Editing
4.2	 How do satellites transmit information used for navigation? 	program (Adobe Photoshop or Paint); use the StarLAB
6.2	S: Complete StarLAB Rover Robotics Lesson 3 – Magnetometer Sensor	Rover to calculate bearings of objects within rooms on the
7.1	Calculate bearing using magnetometer	map then label the bearings on the map.
7.4 9.1	 Turning using bearing and degrees 	 Challenge: This could also be used to create a
9.1	T/C: Discussion or Investigation	treasure hunt/map or to experiment with the
9.3	Why are we using magnetometers to determine bearings on the	accuracy of different compasses in comparison to
9.4	rover?	StarLAB equipment (homemade, store bought,
9.5	 How do rovers obtain bearings or navigate on Mars? 	mobile phone apps, etc.)
	S: Complete StarLAB Rover Robotics Lesson 4 – Advanced Accelerometer &	S/G: Investigate missions or plans for Mars habitation or
	Gyroscope Sensing	exploration (pros, cons, challenges, technology, etc.);
	 Using accelerometer & gyroscope for navigation 	create poster or digital presentation.
	 Determine terrain tilt and calculating slopes 	S: Write lyrics for a Mars 'National Anthem' or design a
	 Mapping an area's slope 	Martian flag for the first human inhabitants
	 Create flowcharts to represent the above activities 	
	T/C: Discussion or Investigation	
	 How is the terrain of Mars similar to or different than Earth? 	
	 Is navigating in space different than navigating on planets? 	
	 How do atmospheric conditions affect navigation? 	
	S: Explore Mars	
	 <u>3D Images</u> or <u>3D Models</u> 	
	 <u>Games</u> (requires installation of Unity Web Player) 	
	o <u>Panoramic Viewer</u>	
	o <u>Visualisations</u>	
	o <u>Virtual Reality</u>	
	 Simulation experiments – <u>1 Year experiment on Earth</u> 	
	(article) & <u>Making Mars Home</u> (website simulation)	

StarLAB	Fuel & Brains (Rover Robotics)	Advancing:	
1.2	This is an advanced section of work that provides students with practical	• Apply knowledge of sensors, energy management,	
2.3	opportunities to further explore energy production and introductory levels of	electro-mechanics and coding to develop	
3.1	learning of the computer science behind machine intelligence. This section	introductory levels of rover autonomy	
3.2 4.1	pairs well with other iSTEM modules, such as Statistics, Solar Cars or Electric	Developing:	
4.3	Vehicle.	• Experimenting with code and power management	
6.1	T/C: Review <u>How Energy is Produced</u> & electro-mechanics	techniques to understand rover autonomy	
6.2	G/S: Investigate fuel types & storage		
6.3	How do each of the following forms of energy work to produce	Extension Activities:	
6.4	energy and give examples of electromechanical devices that use		
12.1	each type of fuel. Identify the pros and cons of each.	S: Investigate and experiment with <u>NASA's open source</u>	
12.2 12.3	• Hydro, Wind, Solar, Fossil, Geo Thermal & Radionuclides	API's and developer tools	
12.3	 Is there a difference between renewable energy and 	S/G: Choose a topic (fuel types, renewable	
	sustainable energy?	batteries/energy or AI) to create a mini project of choice	
Extension	How do rechargeable and non-recharge batteries work differently?	S/G: Using the StarLAB sensors collect, analyse and present	
1.1	• Find examples of rechargeable batteries and how they	statistical findings in a chosen format based on a chosen	
1.2	work. (<u>Lithium Ion</u> , Nickel Hydride, etc.)	topic to solve a practical research based problem	
2.3	• What type of power & batteries do satellites, probes, space ships	S/G: Experiment with solar energy and electric circuits to	
6.1 6.2	and rovers use?	create a solution that uses renewable energy	
6.3	• How are Thermophotovoltaics used in deep space exploration?		
6.4	S: Complete StarLAB Rover Robotics Lesson 5 – Advanced Power Monitoring		
6.5	Advanced level coding		
9.1	Rover power management		
9.2	Alternate sensor integration		
9.3	T/C: Introduce the concept of <u>Artificial Intelligence</u> (AI)		
9.4 9.5	T/C/G: Discussion or Investigation		
9.5 13.1	Is Artificial Intelligence different than Machine Intelligence?		
13.1	• Find and compare examples (5Ws & H) of AI in daily life,		
13.3	entertainment, business & education		
13.4	How is NASA and other private companies using or planning to use		
13.5	AI or Machine Intelligence in space exploration?		
	C/G: Debate		
	Is Artificially Intelligent Machines the future of space exploration?		
	 Is Artificial Intelligence the future of humanity? 		
	Pros & Cons of Artificial intelligence		

	S: Complete StarLAB Rover Robotics Lesson 6 – Giving Your Rover Brains	
	Advanced level coding	
	 Sensing and processing data 	
StarLAB	Go Time (Rover Robotics & Mars Rover Competition)	Advancing:
1.2	Students will work collaboratively to complete various challenge activities	Innovative, collaborative and autonomous
2.3	for preparation and participation in the Mars Rover Robotics Competition.	solutions to competition preparation
4.1		Developing:
4.2	Note: StarLAB Moodle lessons will be released late term 1, 2017. Updates	Consistent and collaborative contributions to
4.3	will be provided via email or the ME program website.	competition preparation
6.1 6.2	T: Explain the rules and guidelines for the competition	
6.2 6.3	G/S: Complete the Preparing for the Rover Competition Lessons	Extension Activities:
6.4	 Details of lessons to be released late term 1 	C/G/S: Create an obstacle course for the StarLAB Rover to
6.5	G/S: Compete in the Mars Rover Competition	navigate then write code to sense and avoid obstacles
12.1		using appropriate input sensors and output signals
12.2		C/G: Brainstorm unique science based team names
12.3		Design a team logo
12.4		 Create posters or t-shirts
12.5		Create posters or t-shifts
		
Extension 1.1		
1.1		
2.1		
2.2		
2.3		
3.2		
6.1		
6.2		
6.3		
6.4		
6.5		
12.1 12.2		
12.2		
12.5		
12.5		

 Justify design choices and clearly explain design concept (purpose/function) Learn or review a chosen 3D modelling software and techniques to create a 3D Model of the design concept Document the project completion process with evidence of time management (blog, GANTT chart or work log) Conduct self and peer reflections to identify areas of design improvement and provide achievement feedback Optional: Self and Peer marking or presentation to an authentic audience (project expo) 	
Teacher Comments	Student or Program Modifications
Example: Pro's / Con's, what the students liked/disliked or tips for next year	 Program Modification Example: added alternative energy research task with practical activity using solar panels to create a mini solar car addressing motion outcomes Student Learning Adjustment Example: Neil – low literacy; provided small group tutorials to demonstrate sensors

Key Terms

Α	D	I	Μ	S
Acceleration	Debouncing	IDLE	Machine Intelligence	Satellite
Accelerometer	Debugging	IOT	Magnetism	Sensor
Actuator	E	Index	Mechatronic	Solar
Algorithm	Electromagnetism	Inertia	Method	Spectrum
Amplitude	Electro-mechanics	Input	Micro-controller	Statistic
API	Encapsulation F	Insulator	Momentum	String
Artificial Intelligence	Flowchart	Integer	MODULO	Sustainable
Attributes	Frequency	L	0	Syntax T
В	Functions	Latching	Objects	Terrain
Bearings	G	LEN	Output	Tilt
Binary	GPS	Logic Error	Р	Theremin
Boolean	Gyroscope	Logic Gate	Power Pneumatics	v
Brushless Motor	н	Loop	Pseudocode Python	Variable
с	Hydraulics		R	Velocity
Capacitor	Hydrogen		Renewable	
Character			Rotation	
Cipher			Resistor	
Classes				
Code				