9/10 STEM ELECTIVE - CIVIL ENGINEERING

TASK 1 - MOST ECONOMICAL FUNCTIONING BRIDGE

COMPLETED ON 12/6/2017

BY ANDRIA ZANOTTO

ABSTRACT

SCOPE

Task 1 requires students to design a theoretical Cable-Stayed, Suspension, Beam, Truss, or Arch bridge, with the use of CAD (computer aided design) technology.

OBJECTIVES

- This bridge must uphold its own weight, inclusive of its reinforced concrete deck, as well as the weight of the standard truck loading.
- The price of the bridge must remain as low as possible, whilst being able to pass a load test.

OTHER

Creative independence exists for all other design considerations, inclusive of the deck elevation, is allowed. However, the design must be unique, and cannot replicate any sample bridge files. Mentoring, and collaboration is key to the achievement of this task, as well as research on materials that would best suit a cost-effective motive. The software required to complete this task is Westpoint Bridge Designer 2014 for the design of the bridge, and Microsoft Word for the report. West Point, provided free of charge, allows the student access to:

- A drawing board, that considers the accurate span length, height and supports
- An automatic calculation of the loads and resulting member forces
- A load test that performs structural safety checks and determines whether the bridge is stable
- An automatic calculation of the cost with every alteration

Lastly, a detailed report on Microsoft Word of the end design and process must be completed and submitted.

INTRODUCTION

Within the 9/10 Elective STEM, engineering is the primary focus. This term, students studied the fundamentals of civil engineering. The purpose of this task was to test their knowledge of this and apply them to a real-world situation, through CAD (computer aided design) technology. Individually, the students would act as mock civil engineers, designing the most structurally sound and inexpensive two-lane bridge, above a river valley. The cost of the bridge must remain as low as possible, whilst still passing the load test. Mentoring, and collaboration was key to the achievement of this task. The software used to complete this task is West Point Bridge Designer 2014, and Microsoft Word.

Within this report, the analysis will reveal how the Arch bridge came to be the most successful, the results summary to detail the progressive cost of the bridge, conclusion and recommendations to summarise the report.

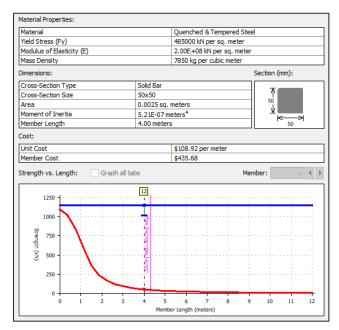
ANALYSIS

GENERAL DESIGN CONSIDERATIONS

This report details the process of the most successful design; an Arch bridge (Andria – 167,420.83). Below are the applied general design considerations:

\$123,500.00 (Includes cost of deck, excavation, and supports; not steel trusses.)		Site Condition: 06C	^
Deck Cost	(6 4-meter panels) x (\$5,000.00 per panel) =		\$30,000.00
Excavation Cost	(85,000 cubic meters) x (\$1.00 per cubic meter) =		\$85,000.00
Abutment Cost	(2 standard abutments) x (\$4,250.00 per abutment) =		\$8,500.00
Pier Cost	No pier =		\$0.00
Anchorage Cost	No anchorages =		\$0.00

The deck was constructed from high-strength concrete (0.15m thick), and was set to bear a load of a standard 225 kN truck, whilst having two lanes.


The decision for these general design considerations came after tedious testing that proved a higherstrength concrete, overall was the most economical option. Whilst being the more expensive option, being of higher strength means having lighter deck members, and an overall cheaper cost. It also proved that an excavation to 4 metres was the most economical. Any higher would add too many members, and/or any lower would increase the size of the members; these options increased the price, yet at an excavation of 4 metres, was the perfect medium. The choice of having a standard abutment and no pier contributed to the motive of creating an arch bridge. The purpose of not having any anchorages contributes to this low budget motive as well.

EXPERIMENTATION OF MATERIALS

A profile of which materials to use, was aided by the article, 'Metallurgy Matters: Carbon content, steel classifications, and alloy steels'. Through this article, I could identify which materials were appropriate for where, and which were most economical, as well as through trial and error on West Point Bridge Designer.

The triple bottom line – social, environmental, and economical components of the bridge was the focus for the use of materials. The social component focuses on having the bridge safe and adequate for applications. This is demonstrated through the construction of the deck, having been made from quenched and tempered steel to ensure strength, at the sacrifice of a costly price. Using this strong material allows for the bar the slim down as much as possible. The deck members were solid bars to ensure a stable deck. This contributed to the low-budget motive, whilst remaining adequate and safe.

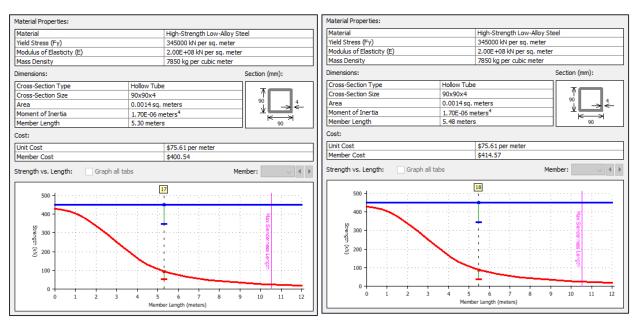
MEMBERS 8 THROUGH TO 13

The environmental component focuses on not overusing materials wherever isn't necessary. This is demonstrated through the construction of members 14, 15, 22, and 23, where carbon steel was used to ensure the ability to be compressed and under tension, whilst remaining slimming and cost-effective. These bars were hollowed to ensure elasticity.

MEMBER 15

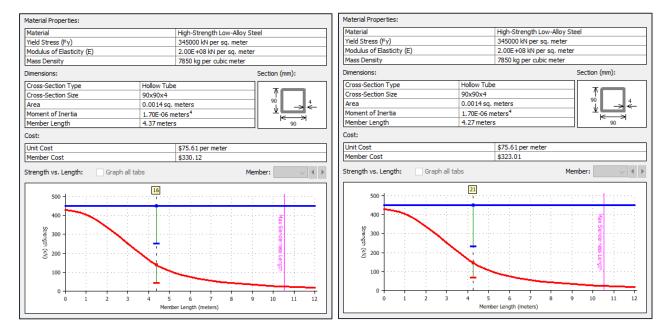
MEMBER 22

Material Properties:		Material Properties:		
Material	Carbon Steel	Material	Carbon Steel	
Yield Stress (Fy)	250000 kN per sq. meter	Yield Stress (Fy)	250000 kN per sq.	meter
Modulus of Elasticity (E)	2.00E+08 kN per sq. meter	Modulus of Elasticity (E)	2.00E+08 kN per s	q. meter
Mass Density	7850 kg per cubic meter	Mass Density	7850 kg per cubic r	neter
Dimensions:	Section (mm):	Dimensions:		Section (mm):
Cross-Section Type Hollow Tube		Cross-Section Type	Hollow Tube	
Cross-Section Size 100x100x5	100 5	Cross-Section Size	100x100x5	
Area 0.0019 sq.	meters U > 🗧	Area	0.0019 sq. meters	
Moment of Inertia 2.87E-06 m		Moment of Inertia	2.87E-06 meters ⁴	¥
Member Length 4.59 meters	s 100	Member Length	4.72 meters	100
Cost:		Cost:		
Unit Cost	\$93.96 per meter	Unit Cost	\$93.96 per meter	
Member Cost	\$431.24	Member Cost	\$443.23	
Strength vs. Length: Graph all tabs	Member: 🗸 🔹 🕨	Strength vs. Length: Graph	all tabs	Member: 🗸 🗸 🕨
500	·····	500 -1	22	
400	·····d······d······d·····d·····d·····d····	400		· · · · · · · · · · · · · · · · · · ·
μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ				
1 300	·····	300	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
1 9 1 1 1 1 1		g : :		
200	······································	200		
			de la Transferia de la composición de l	
100		100		
0		0	<u>; ; ; ; ; ;</u>	
0 1 2 3 4 5	6 7 8 9 10 11 12	0 1 2	3 4 5 6 7 8	8 9 10 11 12
	er Length (meters)			


MEMBERS 14 AND 23

Material			Carbon	Steel	Carbon Steel			
Yield Stress (Fy)			250000	kN per sq. m	eter			
Modulus of Elasticity (E)			2.00E+	08 kN per sq.	meter			
Mass Density			7850 kg	per cubic me	ter			
Dimensions:					Se	ection (r	mm):	
Cross-Section Type		Hollow	Tube			T (
Cross-Section Size		100x10	00x5					
Area		0.0019	9 sq. meters			100 V	-> <	
Moment of Inertia			06 meters ⁴			<u>v</u>		
Member Length		2.80 m	ieters				100	
Cost:								
Unit Cost			\$02.06	per meter				
Unit COSt			\$92.90	permeter				
Member Cost	Graph a	all tabs	\$262.6		Memb	er:	\sim	
Member Cost	Graph a				Memb	er:	~ .	
Member Cost trength vs. Length:					Memb	er:	· · · · · ·	
Member Cost trength vs. Length: 500					Memb	er:	> Max S	
Member Cost trength vs. Length: 500 400					Memb	er:	> Max Sero	
Member Cost trength vs. Length: 500					Memb	er:	> Max Senderne	
Member Cost trength vs. Length: 500 400					Memb	er:	> Nax Serderness L	
Member Cost trength vs. Length: 500 400		_			Memb	er:	> Nax Septemes Leng	
Member Cost trength vs. Length: 500		_			Memb	er:	> Nax Seider nas Length	
Member Cost trength vs. Length: 400 - 200 - 200 - 200 -		_			Memb	er:	> Nax Sender ness Length	
Member Cost Strength vs. Length: 500 - 400 - 9 300 - 9 200 -		_			Memb	er:	Vax Sejdenssi Lenger	

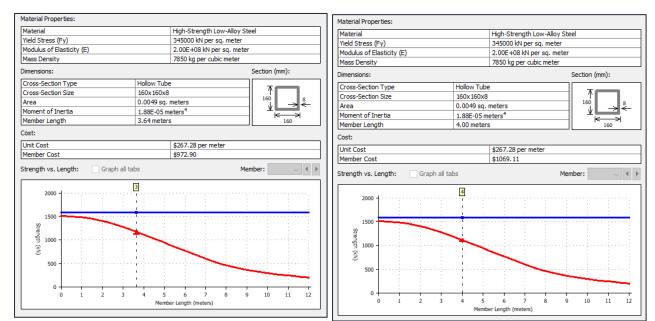
The economical component focuses on making the bridge as cheap as possible whilst not sacrificing performance. This is demonstrated with high-strength low alloy steel in members 1 through 7, and 16 through 21. These areas required the strongest material at a low-budget price. These bars were hollowed to ensure elasticity. If carbon steel was used as the majority, the size of the members would increase and would stress the deck, and if quenched and tempered steel was the majority, the starting price alone would not be the most economical option.


MEMBERS 17 AND 19

MEMBERS 18 AND 20

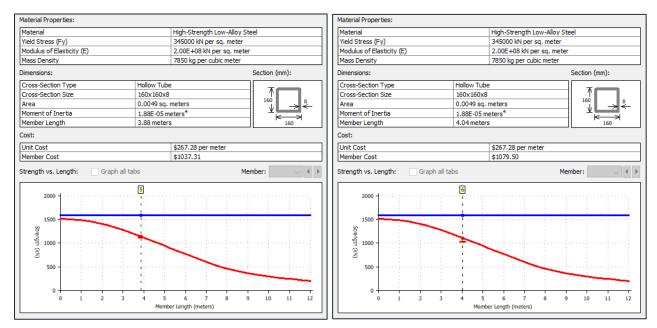
MEMBER 16

MEMBER 21


MEMBERS 1 AND 7

MEMBER 2

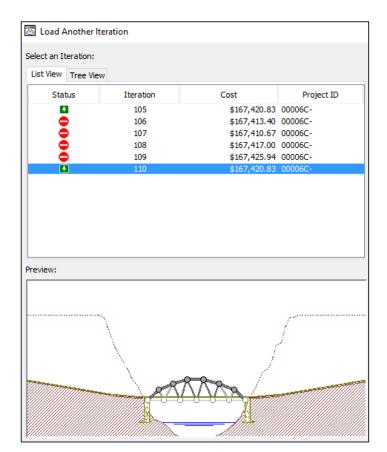
Material Properties:		Material Properties:	
Material	High-Strength Low-Alloy Steel	Material	High-Strength Low-Alloy Steel
Yield Stress (Fy)	345000 kN per sq. meter	Yield Stress (Fy)	345000 kN per sq. meter
Modulus of Elasticity (E)	2.00E+08 kN per sq. meter	Modulus of Elasticity (E)	2.00E+08 kN per sq. meter
Mass Density	7850 kg per cubic meter	Mass Density	7850 kg per cubic meter
Dimensions:	Section (mm):	Dimensions:	Section (mm):
Cross-Section Type Hollow Tube		Cross-Section Type Ho	llow Tube
Cross-Section Size 160x160x8	160	Cross-Section Size 16	0x160x8
Area 0.0049 sq.	meters $\downarrow \rightarrow \dot{\leftarrow}$		0049 sq. meters
Moment of Inertia 1.88E-05 m			88E-05 meters ⁴ ⊻
Member Length 3.72 meters	s 160	Member Length 3.8	B1 meters 160
Cost:		Cost:	
Unit Cost	\$267.28 per meter	Unit Cost	\$267.28 per meter
Member Cost	\$993.34	Member Cost	\$1017.76
Strength vs. Length: Graph all tabs	Member: V	Strength vs. Length: Graph all tabs	Member: V
2000 -		2000	
2000 -		2000	
1500	· · · · · · · · · · · · ·	1500	· · · · · · · · · · · · · · · ·
Sten		57 9 1000 -	
g 1000		B 1000	
		(KN)	
500		500	
300			
0		0	
0 1 2 3 4 5	6 7 8 9 10 11 12	0 1 2 3 4	5 6 7 8 9 10 11 12 Member Length (meters)
Memb	er Length (meters)	L	mentuer berigith (meters)


MEMBER 3

MEMBER 4

MEMBER 5

MEMBER 6



Therefore, the decision for each component contributes to a cost-effective motive.

OTHER

The trend I recognised when designing this bridge was that it was more cost-effective to buy in bulk. Therefore, all groups of members are similar in material, size, and position. Together, in the form of an arch bridge the members produced the most cost-effective solution.

LOAD TEST RESULTS

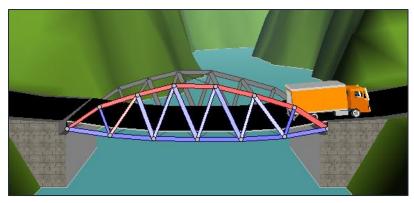
.oad T	est Results										
#	Material Type	Cross Section	Size (mm)	Length (m)	Slender- ness	Compression Force	Compression Strength	Compression Status	Tension Force	Tension Strength	Tension Status
1	HSS	Tube	160	3.72	59.81	1146.80	1164.75	OK	0.00	1594.18	OK
2	HSS	Tube	160	3.81	61.28	1104.97	1149.79	OK	0.00	1594.18	OK
3	HSS	Tube	160	3.64	58.58	1133.91	1177.14	OK	0.00	1594.18	OK
4	HSS	Tube	160	4.00	64.37	1093.63	1117.80	OK	0.00	1594.18	OK
5	HSS	Tube	160	3.88	62.46	1121.85	1137.69	OK	0.00	1594.18	OK
6	HSS	Tube	160	4.04	65.00	1030.49	1111.25	OK	0.00	1594.18	OK
7	HSS	Tube	160	3.72	59.81	1067.73	1164.75	OK	0.00	1594.18	OK
8	QTS	Bar	50	4.00	277.13	0.00	50.89	OK	848.56	1151.88	OK
9	QTS	Bar	50	4.00	277.13	0.00	50.89	OK	989.58	1151.88	OK
10	QTS	Bar	50	4.00	277.13	0.00	50.89	OK	975.11	1151.88	OK
11	QTS	Bar	50	4.00	277.13	0.00	50.89	OK	1007.74	1151.88	OK
12	QTS	Bar	50	4.00	277.13	0.00	50.89	OK	1014.93	1151.88	OK
13	QTS	Bar	50	4.00	277.13	0.00	50.89	OK	790.06	1151.88	OK
14	CS	Tube	100	2.80	71.97	0.00	325.50	OK	373.57	451.25	OK
15	CS	Tube	100	4.59	118.17	181.45	205.02	OK	258.31	451.25	OK
16	HSS	Tube	90	4.37	124.22	44.94	139.40	OK	251.23	450.98	OK
17	HSS	Tube	90	5.30	150.72	52.19	94.70	OK	348.64	450.98	OK
18	HSS	Tube	90	5.48	156.00	38.59	88.40	OK	344.26	450.98	OK
19	HSS	Tube	90	5.30	150.72	93.89	94.70	OK	276.00	450.98	OK
20	HSS	Tube	90	5.48	156.00	37.08	88.40	OK	411.35	450.98	OK
21	HSS	Tube	90	4.27	121.55	69.68	145.61	OK	231.48	450.98	OK
22	CS	Tube	100	4.72	121.46	182.45	196.69	OK	274.64	451.25	OK
23	CS	Tube	100	2.80	71.97	0.00	325.50	OK	372.81	451.25	OK

The above tables shows the experimentation of the arch bridge, passing its load test.

RESULTS SUMMARY

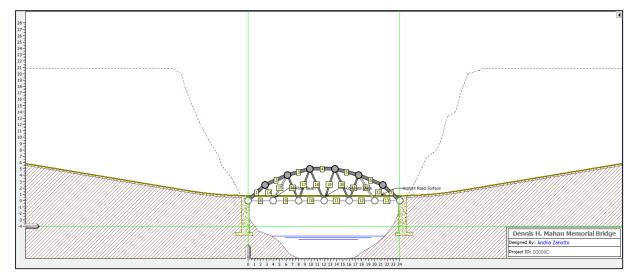
The result of the bridge was an arch bridge with the price of \$167,420.83. The negative limitations during the designing of this bridge were as follows:

- Inexperience in the program this was improved through continued use of the program.
- Trial and error strategy which provided more error and then success this was improved through continued use of the program.


BEFORE LOAD TEST

DURING LOAD TEST

AFTER LOAD TEST


Above shows this bridge passing its load test.

COST CALCULATION REPORT

Cost Calculations Repor	t		×
Type of Cost	Item	Cost Calculation	Cost
Material Cost (M)	Carbon Steel Hollow Tube	(222.2 kg) x (\$6.30 per kg) x (2 Trusses) =	\$2,799.49
	High-Strength Low-Alloy Steel Hollow Tube	(1349.5 kg) x (\$7.00 per kg) x (2 Trusses) =	\$18,893.24
	Quenched & Tempered Steel Solid Bar	(471.0 kg) x (\$5.55 per kg) x (2 Trusses) =	\$5,228.10
Connection Cost (C)		(13 Joints) x (500.0 per joint) x (2 Trusses) =	\$13,000.00
Product Cost (P)	6 - 50x50 mm Quenched & Tempered Steel Bar	(\$1,000.00 per Product) =	\$1,000.00
	6 - 90x90x4 mm High-Strength Low-Alloy Steel Tube	(\$1,000.00 per Product) =	\$1,000.00
	4 - 100x100x5 mm Carbon Steel Tube	(\$1,000.00 per Product) =	\$1,000.00
	7 - 160x160x8 mm High-Strength Low-Alloy Steel Tube	(\$1,000.00 per Product) =	\$1,000.00
Site Cost (S)	Deck Cost	(6 4-meter panels) x (\$5,000.00 per panel) =	\$30,000.00
	Excavation Cost	(85,000 cubic meters) x (\$1.00 per cubic meter) =	\$85,000.00
	Abutment Cost	(2 standard abutments) x (\$4,250.00 per abutment) =	\$8,500.00
	Pier Cost	No pier =	\$0.00
	Cable Anchorage Cost	No anchorages =	\$0.00
Total Cost	M + C + P + S	\$26,920.83 + \$13,000.00 + \$4,000.00 + \$123,500.00 =	\$167,420.83

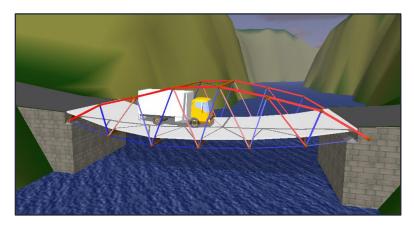
This table details the cost of all the elements of the bridge.

Above represents the final design of the arch bridge.

CONCLUSION/RECOMMENDATIONS

In conclusion, the most economical, and functioning bridge, was the arch design. It supported its own weight as well as the weight of the truck load. The cost of the bridge remained as low as possible, at \$167,420.83, and it passed the load test. The aid of CAD made this possible, with West Point Bridge Designer 2014.

ACKNOWLEDGEMENTS


Collaboration was key to achieving this task to gain an idea of what is successful. Those who contributed to this task are as follows:

- Mentor Mr Preston
- Fellow cohorts Anthony Carusi, Jaykumar Shah

BIBLIOGRAPHY

Source	Author	Information
www.thefabricator.com/article/metalsmaterials/carbon-content-steel-	Bob	Metal material
classifications-and-alloy-steels	Capudean	qualities
www.griffith-h.schools.nsw.edu.au/ghs-moodle	Mr	Assessment Task
	Preston	Information
www.fluor.com/mobile/about_fluor/newsroom/pages/engineering_glossary.aspx	Fluor	Engineering
		glossary terms

APPENDIX

Old-style graphics load test.

A BC	2/05/2017 10:00 AM	WP Bridge Design	1 KB
A Successful - 170,801.91	16/05/2017 8:51 PM	91 File	1 KB
A Successful - 171,326.00	16/05/2017 10:02	00 File	1 KB
A Successful - 171,436.92	16/05/2017 9:57 AM	92 File	1 KB
A Successful - 171,883.48	16/05/2017 9:55 AM	48 File	1 KB
A Successful - 173,016.85	16/05/2017 9:39 AM	85 File	1 KB
A Successful - 174,049.70	9/05/2017 9:24 AM	70 File	1 KB
A Successful - 174,231.48	9/05/2017 9:23 AM	48 File	1 KB
A Successful - 174,247.29	9/05/2017 9:12 AM	29 File	1 KB
A Successful - 174,683.52	9/05/2017 9:08 AM	52 File	1 KB
A Successful - 174,826.97	9/05/2017 9:07 AM	97 File	1 KB
A Successful - 174,829.60	9/05/2017 9:07 AM	60 File	1 KB
A Successful - 174,966.92	5/05/2017 11:25 PM	92 File	1 KB
A Successful - 175,212.52	5/05/2017 11:22 PM	52 File	1 KB
A Successful - 175,884.01	5/05/2017 10:49 AM	01 File	1 KB
Andria - 167,420.83	11/06/2017 12:58	83 File	1 KB
EA Medium Strength Successful - 168,63	4/06/2017 7:24 PM	36 File	1 KB
EA Medium Strength Successful - 168,69	4/06/2017 6:28 PM	83 File	1 KB
EA Medium Strength Successful - 171,10	4/06/2017 6:58 PM	27 File	1 KB
EA Medium Strength Successful - 172,74	4/06/2017 7:01 PM	17 File	1 KB
EA Successful - 167,420.83	9/06/2017 11:01 AM	83 File	1 KB
EA Successful - 167,421.55	9/06/2017 10:43 AM	55 File	1 KB
EA Successful - 167,908.56	17/05/2017 8:25 PM	56 File	1 KB
EA Successful - 168,314.26	17/05/2017 8:23 PM	26 File	1 KB

EA Successful - 168,454.27	4/06/2017 7:46 PM	27 File	1 KB
EA Successful - 168,770.65	17/05/2017 8:20 PM	65 File	1 KB
EA Successful - 170,075.72	17/05/2017 8:19 PM	72 File	1 KB
EA Successful - 170,380.78	17/05/2017 8:18 PM	78 File	1 KB
EA Successful - 170,644.68	17/05/2017 4:59 PM	68 File	1 KB
EA Successful - 170,645.43	17/05/2017 4:57 PM	43 File	1 KB
EA Successful - 170,955.54	17/05/2017 4:48 PM	54 File	1 KB
EA Successful - 171,064.58	17/05/2017 4:45 PM	58 File	1 KB
EA Successful - 171,265.66	17/05/2017 4:52 PM	66 File	1 KB
EA Successful - 173,693.93	17/05/2017 4:44 PM	93 File	1 KB
F Successful - 185,256.52	5/05/2017 10:35 AM	52 File	1 KB
IA Successful - 176,866.82	3/05/2017 10:00 AM	82 File	1 KB
IA Successful - 176,877.76	2/05/2017 10:41 PM	76 File	1 KB
IA Successful - 177,158.77	2/05/2017 5:04 PM	77 File	1 KB
IA Successful - 178,309.65	2/05/2017 4:53 PM	65 File	1 KB
R Successful - 178,237.44	11/05/2017 8:08 AM	44 File	1 KB

List of all successful bridges.